目录:
加壳原理笔记01:PE头格式、加载、导入表、重定位
加壳原理笔记02:加壳案例
加壳原理笔记03 - 加载到固定基址
加壳原理笔记04 - zlib压缩壳案例
加壳原理笔记05:利用图片隐藏
加壳原理笔记06:反调试技术入门
加壳原理笔记07:花指令入门
加壳原理笔记08:代码混淆技术入门
前言
对 Windows 程序的加载和运行过程有了基本了解后,手动加载并运行一个PE文件并不成问题。加壳仅仅是在这上面更进一步:把加载程序和被加载的程序合并成一个文件。
这么说可能有点太简单化,大部分的工作其实就在这儿:如何处理被加载的程序?压缩?加密?混淆?加载器(或者叫壳程序)如何反调试?
这里先写一个简单的加壳机,仅仅是把被加载的PE文件作为一个 Section,添加到壳程序里,让壳程序直接从这个 Section 加载并运行。其他花里胡哨的操作都先不整,仅作为证明工作原理的案例。
0x01 壳程序
1.1 思路
和加载一个PE文件不同,既然被加载的程序就在 Section 里,那需要做的只有定位到 Section,然后把 Section 内容当读取进内存的 PE 文件内容处理就好了。
壳程序应该尽量保持轻量,不在原始程序上添加太多东西(加完壳大小翻一倍还多了一堆DLL依赖那谁受得了啊),所以很多标准C库的函数也不能用了,像是memcpy、strcmp 都要自己简单实现一个。
1.2 壳实现
绝大部分内容和之前文章中的 load_PE 一致,入口点修改为 _start,需要注意。
#include
#include
void *load_PE(char *PE_data);
void fix_iat(char *p_image_base, IMAGE_NT_HEADERS *p_NT_headers);
void fix_base_reloc(char *p_image_base, IMAGE_NT_HEADERS *p_NT_headers);
int mystrcmp(const char *str1, const char *str2);
void mymemcpy(char *dest, const char *src, size_t length);
int _start(void) {
char *unpacker_VA = (char *)GetModuleHandleA(NULL);
IMAGE_DOS_HEADER *p_DOS_header = (IMAGE_DOS_HEADER *)unpacker_VA;
IMAGE_NT_HEADERS *p_NT_headers = (IMAGE_NT_HEADERS *)(((char *)unpacker_VA) + p_DOS_header->e_lfanew);
IMAGE_SECTION_HEADER *sections = (IMAGE_SECTION_HEADER *)(p_NT_headers + 1);
char *packed = NULL;
char packed_section_name[] = ".packed";
for (int i = 0; i FileHeader.NumberOfSections; i++) {
if (mystrcmp(sections.Name, packed_section_name) == 0) {
packed = unpacker_VA + sections.VirtualAddress;
break;
}
}
if (packed != NULL) {
void (*entrypoint)(void) = (void (*)(void))load_PE(packed);
entrypoint();
}
return 0;
}
void *load_PE(char *PE_data) {
IMAGE_DOS_HEADER *p_DOS_header = (IMAGE_DOS_HEADER *)PE_data;
IMAGE_NT_HEADERS *p_NT_headers = (IMAGE_NT_HEADERS *)(PE_data + p_DOS_header->e_lfanew);
// extract information from PE header
DWORD size_of_image = p_NT_headers->OptionalHeader.SizeOfImage;
DWORD entry_point_RVA = p_NT_headers->OptionalHeader.AddressOfEntryPoint;
DWORD size_of_headers = p_NT_headers->OptionalHeader.SizeOfHeaders;
// allocate memory
// https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
char *p_image_base = (char *)VirtualAlloc(NULL, size_of_image, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (p_image_base == NULL) {
return NULL;
}
// copy PE headers in memory
mymemcpy(p_image_base, PE_data, size_of_headers);
// Section headers starts right after the IMAGE_NT_HEADERS struct, so we do some pointer arithmetic-fu here.
IMAGE_SECTION_HEADER *sections = (IMAGE_SECTION_HEADER *)(p_NT_headers + 1);
for (int i = 0; i FileHeader.NumberOfSections; i++) {
// calculate the VA we need to copy the content, from the RVA
// section.VirtualAddress is a RVA, mind it
char *dest = p_image_base + sections.VirtualAddress;
// check if there is Raw data to copy
if (sections.SizeOfRawData > 0) {
// We copy SizeOfRaw data bytes, from the offset PointerToRawData in the file
mymemcpy(dest, PE_data + sections.PointerToRawData, sections.SizeOfRawData);
} else {
for (size_t i = 0; i OptionalHeader.SizeOfHeaders, PAGE_READONLY, &oldProtect);
for (int i = 0; i FileHeader.NumberOfSections; ++i) {
char *dest = p_image_base + sections.VirtualAddress;
DWORD s_perm = sections.Characteristics;
DWORD v_perm = 0; // flags are not the same between virtal protect and the section header
if (s_perm & IMAGE_SCN_MEM_EXECUTE) {
v_perm = (s_perm & IMAGE_SCN_MEM_WRITE) ? PAGE_EXECUTE_READWRITE : PAGE_EXECUTE_READ;
} else {
v_perm = (s_perm & IMAGE_SCN_MEM_WRITE) ? PAGE_READWRITE : PAGE_READONLY;
}
VirtualProtect(dest, sections.Misc.VirtualSize, v_perm, &oldProtect);
}
return (void *)(p_image_base + entry_point_RVA);
}
void fix_iat(char *p_image_base, IMAGE_NT_HEADERS *p_NT_headers) {
IMAGE_DATA_DIRECTORY *data_directory = p_NT_headers->OptionalHeader.DataDirectory;
// load the address of the import descriptors array
IMAGE_IMPORT_DESCRIPTOR *import_descriptors =
(IMAGE_IMPORT_DESCRIPTOR *)(p_image_base + data_directory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);
// this array is null terminated
for (int i = 0; import_descriptors.OriginalFirstThunk != 0; ++i) {
// Get the name of the dll, and import it
char *module_name = p_image_base + import_descriptors.Name;
HMODULE import_module = LoadLibraryA(module_name);
if (import_module == NULL) {
// panic!
ExitProcess(255);
}
// the lookup table points to function names or ordinals => it is the IDT
IMAGE_THUNK_DATA *lookup_table = (IMAGE_THUNK_DATA *)(p_image_base + import_descriptors.OriginalFirstThunk);
// the address table is a copy of the lookup table at first
// but we put the addresses of the loaded function inside => that's the IAT
IMAGE_THUNK_DATA *address_table = (IMAGE_THUNK_DATA *)(p_image_base + import_descriptors.FirstThunk);
// null terminated array, again
for (int i = 0; lookup_table.u1.AddressOfData != 0; ++i) {
void *function_handle = NULL;
// Check the lookup table for the adresse of the function name to import
DWORD lookup_addr = lookup_table.u1.AddressOfData;
if ((lookup_addr & IMAGE_ORDINAL_FLAG) == 0) { // if first bit is not 1
// import by name : get the IMAGE_IMPORT_BY_NAME struct
IMAGE_IMPORT_BY_NAME *image_import = (IMAGE_IMPORT_BY_NAME *)(p_image_base + lookup_addr);
// this struct points to the ASCII function name
char *funct_name = (char *)&(image_import->Name);
// get that function address from it's module and name
function_handle = (void *)GetProcAddress(import_module, funct_name);
} else {
// import by ordinal, directly
function_handle = (void *)GetProcAddress(import_module, (LPSTR)lookup_addr);
}
if (function_handle == NULL) {
ExitProcess(255);
}
// change the IAT, and put the function address inside.
address_table.u1.Function = (DWORD)function_handle;
}
}
}
void fix_base_reloc(char *p_image_base, IMAGE_NT_HEADERS *p_NT_headers) {
IMAGE_DATA_DIRECTORY *data_directory = p_NT_headers->OptionalHeader.DataDirectory;
// this is how much we shifted the ImageBase
DWORD delta_VA_reloc = ((DWORD)p_image_base) - p_NT_headers->OptionalHeader.ImageBase;
// if there is a relocation table, and we actually shitfted the ImageBase
if (data_directory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress != 0 && delta_VA_reloc != 0) {
// calculate the relocation table address
IMAGE_BASE_RELOCATION *p_reloc =
(IMAGE_BASE_RELOCATION *)(p_image_base + data_directory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);
// once again, a null terminated array
while (p_reloc->VirtualAddress != 0) {
// how any relocation in this block
// ie the total size, minus the size of the "header", divided by 2 (those are words, so 2 bytes for each)
DWORD size = (p_reloc->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION)) / 2;
// the first relocation element in the block, right after the header (using pointer arithmetic again)
WORD *fixups = (WORD *)(p_reloc + 1);
for (size_t i = 0; i > 12;
// offset is the last 12 bits
int offset = fixups & 0x0fff;
// this is the address we are going to change
DWORD *change_addr = (DWORD *)(p_image_base + p_reloc->VirtualAddress + offset);
// there is only one type used that needs to make a change
switch (type) {
case IMAGE_REL_BASED_HIGHLOW:
*change_addr += delta_VA_reloc;
break;
default:
break;
}
}
// switch to the next relocation block, based on the size
p_reloc = (IMAGE_BASE_RELOCATION *)(((DWORD)p_reloc) + p_reloc->SizeOfBlock);
}
}
}
int mystrcmp(const char *str1, const char *str2) {
while (*str1 == *str2 && *str1 != 0) {
str1++;
str2++;
}
if (*str1 == 0 && *str2 == 0) {
return 0;
}
return -1;
}
void mymemcpy(char *dest, const char *src, size_t length) {
for (size_t i = 0; i
构建参数(CMAKE)
add_executable(loader_2 WIN32 loader_2.c)
target_compile_options(loader_2 PRIVATE /GS-)
target_link_options(loader_2 PRIVATE /NODEFAULTLIB /ENTRY:_start)
参数/GS-是为了避免在/NODEFAULTLIB下出现一些缓存区安全检查代码链接错误。参考文档。
0x02 加壳机
相信已经发现了,上文并没有提到怎么把程序嵌入壳程序里。这是因为加壳并不是在壳程序编译时直接把文件嵌进去=,=虽然理论上来说也可以,但这里不讨论了。仅仅看加壳机加壳的场景吧。
2.1 加壳机原理
加壳机做的事情包括:
反正看起来就很麻烦,不过幸好操作 PE 文件的库不少,GitHub 搜一搜就有。这里用 LIEF 这个库,操作蛮简单的。
2.2 源码
#include
#include
#include
std::vector read_file(const std::string &path) {
auto h = CreateFile(path.c_str(), GENERIC_READ, 0, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
DWORD readbyte = 0;
auto filesize = GetFileSize(h, nullptr);
auto content = std::vector();
content.resize(filesize, 0);
if (!ReadFile(h, content.data(), filesize, &readbyte, nullptr)) {
abort();
}
if (readbyte != filesize) {
abort();
}
CloseHandle(h);
return content;
}
int main(int argc, const char *argv[]) {
if (argc add_section(packed_section, LIEF::PE::PE_SECTION_TYPES::DATA); // 把 section 添加到壳程序里
// 用 lief 实现把修改后的壳程序写入硬盘
auto builder = LIEF::PE::Builder::Builder(loader_binary.get());
builder.build();
builder.write("packed.exe");
return 0;
}
编译指令(CMAKE)参考 LIEF 文档。
# Custom path to the LIEF install directory
set(LIEF_DIR CACHE PATH ${CMAKE_INSTALL_PREFIX})
# Directory to 'FindLIEF.cmake'
list(APPEND CMAKE_MODULE_PATH ${LIEF_DIR}/share/LIEF/cmake)
# include 'FindLIEF.cmake'
include(FindLIEF)
# Find LIEF
find_package(LIEF REQUIRED COMPONENTS STATIC) # COMPONENTS: - Default: STATIC
add_executable(packer packer.cpp)
if(MSVC)
target_compile_options(packer PRIVATE /FIiso646.h /MT)
set_property(TARGET packer PROPERTY LINK_FLAGS /NODEFAULTLIB:MSVCRT)
endif()
target_include_directories(packer PRIVATE ${LIEF_INCLUDE_DIRS})
set_property(TARGET packer
PROPERTY CXX_STANDARD 11
PROPERTY CXX_STANDARD_REQUIRED ON)
target_link_libraries(packer PRIVATE ${LIEF_LIBRARIES})
结论
加壳程序反而平平无奇,正印证了那句台下功夫。
这个案例程序依然存在很多问题,比如说不支持64位程序,不支持不支持ASLR的程序,而且加壳后 .packed 内容可以直接看到是个PE,脱壳跟玩一样。
已经到了这一步,我想后续可以做个简单的压缩壳作为实用案例看看。
参考:
加载器部分参考了文章,LIEF部分因为 python 出现莫名其妙的 not supported 错误,于是换成用 C++ 来写了。