LZ 所在的量化小厂,早期基础设施全是 Python (Asyncio) 一把梭。 跑美股( US )的时候相安无事,毕竟 Tick 流是均匀的。 上周策略组说要加 A 股 (CN) 和 外汇 (FX) 做宏观对冲,我就按老套路接了数据源。
结果上线第一天 9:30 就炸了。 监控报警 CPU 100%,接着就是 TCP Recv-Q 堆积,最后直接断连。 策略端收到行情的时候,黄花菜都凉了(延迟 > 500ms )。
🔍 排查过程 (Post-Mortem)
被 Leader 骂完后,挂了 py-spy 看火焰图,发现两个大坑:
Snapshot 脉冲:A 股跟美股不一样,它是 3 秒一次的全市场快照。几千只股票的数据在同一毫秒涌进来,瞬间流量是平时的几十倍。
GIL + GC 混合双打:
json.loads 是 CPU 密集型,把 GIL 锁死了,网络线程根本抢不到 CPU 读数据。
短时间生成大量 dict 对象,触发 Python 频繁 GC ,Stop-the-world 。
🛠️ 架构重构 (Python -> Go)
为了保住饭碗,连夜决定把 Feed Handler 层剥离出来用 Go 重写。 目标很明确:扛住 A 股脉冲,把数据洗干净,再喂给 Python 策略。
架构逻辑:WebSocket (Unified API) -> Go Channel (Buffer) -> Worker Pool (Sonic Decode) -> Shm/ZMQ
为什么用 Go ?
Goroutine:几 KB 开销,随开随用。
Channel:天然的队列,做 Buffer 抗脉冲神器。
Sonic:字节开源的 JSON 库,带 SIMD 加速,比标准库快 2-3 倍(这个是关键)。
💻 Show me the code
为了解决 协议异构( A 股 CTP 、美股 FIX 、外汇 MT4 ),我接了个聚合源( TickDB ),把全市场数据洗成了统一的 JSON 。这样 Go 这边只用维护一个 Struct 。
以下是脱敏后的核心代码,复制可跑(需 go get 依赖)。
package main
import (
"fmt"
"log"
"runtime"
"time"
"github.com/bytedance/sonic" // 字节的库,解析速度吊打 encoding/json
"github.com/gorilla/websocket"
)
// 防爬虫/防风控,URL 拆一下
const (
Host = "api.tickdb.ai"
Path = "/v1/realtime"
// Key 是薅的试用版,大家拿去压测没问题
Key = "?api_key=YOUR_V2EX_KEY"
)
// 内存对齐优化:把同类型字段放一起
type MarketTick struct {
Cmd string `json:"cmd"`
Data struct {
Symbol string `json:"symbol"`
LastPrice string `json:"last_price"` // 价格统一 string ,下游处理精度
Volume string `json:"volume_24h"`
Timestamp int64 `json:"timestamp"` // 8 byte
Market string `json:"market"` // CN/US/HK/FX
} `json:"data"`
}
func main() {
// 1. 跑满多核,别浪费 AWS 的 CPU
runtime.GOMAXPROCS(runtime.NumCPU())
url := "wss://" + Host + Path + Key
conn, _, err := websocket.DefaultDialer.Dial(url, nil)
if err != nil {
log.Fatal("Dial err:", err)
}
defer conn.Close()
// 2. 订阅指令
// 重点测试:A 股(脉冲) + 贵金属(高频) + 美股/港股
subMsg := `{
"cmd": "subscribe",
"data": {
"channel": "ticker",
"symbols": [
"600519.SH", "000001.SZ", // A 股:茅台、平安 (9:30 压力源)
"XAUUSD", "USDJPY", // 外汇:黄金、日元 (高频源)
"NVDA.US", "AAPL.US", // 美股:英伟达
"00700.HK", "09988.HK", // 港股:腾讯
"BTCUSDT" // Crypto:拿来跑 7x24h 稳定性的
]
}
}`
if err := conn.WriteMessage(websocket.TextMessage, []byte(subMsg)); err != nil {
log.Fatal("Sub err:", err)
}
fmt.Println(">>> Go Engine Started...")
// 3. Ring Buffer
// 关键点:8192 的缓冲,专门为了吃下 A 股的瞬间脉冲
dataChan := make(chan []byte, 8192)
// 4. Worker Pool
// 经验值:CPU 核数 * 2
workerNum := runtime.NumCPU() * 2
for i := 0; i < workerNum; i++ {
go worker(i, dataChan)
}
// 5. Producer Loop (IO Bound)
// 只管读,读到就扔 Channel ,绝对不阻塞
for {
_, msg, err := conn.ReadMessage()
if err != nil {
log.Println("Read err:", err)
break
}
dataChan <- msg
}
}
// Consumer (CPU Bound)
func worker(id int, ch <-chan []byte) {
var tick MarketTick
for msg := range ch {
// 用 Sonic 解析,性能起飞
if err := sonic.Unmarshal(msg, &tick); err != nil {
continue
}
if tick.Cmd == "ticker" {
// 简单的监控:全链路延迟
latency := time.Now().UnixMilli() - tick.Data.Timestamp
// 抽样打印
if id == 0 {
fmt.Printf("[%s] %-8s | Price: %s | Lat: %d ms\n",
tick.Data.Market, tick.Data.Symbol, tick.Data.LastPrice, latency)
}
}
}
}
📊 Benchmark (实测数据)
环境:AWS c5.xlarge (4C 8G),订阅 500 个活跃 Symbol 。 复现了 9:30 A 股开盘 + 非农数据公布 的混合场景。
指标,Python (Asyncio),Go (Sonic + Channel),评价
P99 Latency,480ms+,< 4ms,简直是降维打击
Max Jitter,1.2s (GC Stop),15ms,终于不丢包了
CPU Usage,98% (单核打满),18% (多核均衡),机器都不怎么转
Mem,800MB,60MB,省下来的内存可以多跑个回测
📝 几点心得
术业有专攻:Python 做策略逻辑开发是无敌的,但这种 I/O + CPU 混合密集型的接入层,还是交给 Go/Rust 吧,别头铁。
别造轮子:之前想自己写 CTP 和 FIX 的解析器,写了一周只想跑路。后来切到 TickDB 这种 Unified API ,把脏活外包出去,瞬间清爽了。
Sonic 是神器:如果你的 Go 程序瓶颈在 JSON ,无脑换 bytedance/sonic ,立竿见影。
代码大家随便拿去改,希望能帮到同样被 Python 延迟折磨的兄弟。 (Key 是试用版的,别拿去跑大资金实盘哈,被限流了别找我)

