[从文本到 3D] 输入文本描述,生成 3D Mesh

查看 18|回复 0
作者:layumi   
小红书的 Demo: https://www.xiaohongshu.com/explore/651ae551000000001e00c7b0
Youtube 的 Demo: https://www.youtube.com/watch?v=wxoOcO-9NWU
代码在 https://github.com/Texaser/MTN
欢迎大家关注! Star !感谢各位大佬!
输入一个文本,大概训练 1 个小时,就可以产生对应的 3D model 了。
相比之前的算法,由于我们采用 progressive 的形式,在形态上的鲁棒性更强,收敛速度也快一些。
MTN (Multi-Scale Triplane Network)
This repository contains the official implementation of Progressive Text-to-3D Generation for Automatic 3D Prototyping ( https://arxiv.org/abs/2309.14600).
Paper
Video results
https://github.com/Texaser/MTN/assets/50570271/bdc776a6-ee2d-43ff-9ee3-21784799d3cb
https://github.com/Texaser/MTN/assets/50570271/197fa808-154b-4671-8446-8350b1e166d6
For more videos, please refer to https://www.youtube.com/watch?v=LH6-wKg30FQ
Instructions:
[ol]
  • Install the requirements:
    [/ol]
    pip install -r requirements.txt
    To use DeepFloyd-IF, you need to accept the usage conditions from hugging face, and login with huggingface-cli login in command line.
    [ol]
  • Start training!
    [/ol]
    # choose stable-diffusion version
    python main.py --text "a hamburger" --workspace trial -O --sd_version 2.1
    # use DeepFloyd-IF for guidance:
    python main.py --text "a hamburger" --workspace trial -O --IF
    python main.py --text "a hamburger" --workspace trial -O --IF --vram_O # requires ~24G GPU memory
    python main.py -O --text "a tiger cub" --workspace trial_perpneg_if_tiger --iters 6000 --IF --batch_size 1 --perpneg
    python main.py -O --text "a shiba dog wearing sunglasses" --workspace trial_perpneg_if_shiba --iters 6000 --IF --batch_size 1 --perpneg
    python main.py -O --text "a octopus toy" --workspace trial_perpneg_if_octopus --iters 6000 --IF --batch_size 1 --perpneg
    # larger absolute value of negative_w is used for the following command because the defult negative weight of -2 is not enough to make the diffusion model to produce the views as desired
    python main.py -O --text "a shiba dog wearing sunglasses" --workspace trial_perpneg_if_shiba --iters 6000 --IF --batch_size 1 --perpneg --negative_w -3.0
    # after the training is finished:
    # test (exporting 360 degree video)
    python main.py --workspace trial -O --test
    # also save a mesh (with obj, mtl, and png texture)
    python main.py --workspace trial -O --test --save_mesh
    # test with a GUI (free view control!)
    python main.py --workspace trial -O --test --gui
    Tested environments
  • torch 1.13 & CUDA 11.5 on a V100.

    Citation
    If you find this work useful, a citation will be appreciated via:
    @article{yi2023progressive,
      title={Progressive Text-to-3D Generation for Automatic 3D Prototyping},
      author={Yi, Han and Zheng, Zhedong and Xu, Xiangyu and Chua, Tat-seng},
      journal={arXiv preprint arXiv:2309.14600},
      year={2023}
    }
    Acknowledgement
    This code base is built upon the following awesome open-source projects:
    Stable DreamFusion,
    threestudio
    Thanks the authors for their remarkable job !
  • 您需要登录后才可以回帖 登录 | 立即注册

    返回顶部